36 research outputs found

    Cost-sensitive decision tree ensembles for effective imbalanced classification

    Get PDF
    Real-life datasets are often imbalanced, that is, there are significantly more training samples available for some classes than for others, and consequently the conventional aim of reducing overall classification accuracy is not appropriate when dealing with such problems. Various approaches have been introduced in the literature to deal with imbalanced datasets, and are typically based on oversampling, undersampling or cost-sensitive classification. In this paper, we introduce an effective ensemble of cost-sensitive decision trees for imbalanced classification. Base classifiers are constructed according to a given cost matrix, but are trained on random feature subspaces to ensure sufficient diversity of the ensemble members. We employ an evolutionary algorithm for simultaneous classifier selection and assignment of committee member weights for the fusion process. Our proposed algorithm is evaluated on a variety of benchmark datasets, and is confirmed to lead to improved recognition of the minority class, to be capable of outperforming other state-of-the-art algorithms, and hence to represent a useful and effective approach for dealing with imbalanced datasets

    Increasing allocated tasks with a time minimization algorithm for a search and rescue scenario

    Get PDF
    Rescue missions require both speed to meet strict time constraints and maximum use of resources. This study presents a Task Swap Allocation (TSA) algorithm that increases vehicle allocation with respect to the state-of-the-art consensus-based bundle algorithm and one of its extensions, while meeting time constraints. The novel idea is to enable an online reconfiguration of task allocation among distributed and networked vehicles. The proposed strategy reallocates tasks among vehicles to create feasible spaces for unallocated tasks, thereby optimizing the total number of allocated tasks. The algorithm is shown to be efficient with respect to previous methods because changes are made to a task list only once a suitable space in a schedule has been identified. Furthermore, the proposed TSA can be employed as an extension for other distributed task allocation algorithms with similar constraints to improve performance by escaping local optima and by reacting to dynamic environments

    Thermography based breast cancer analysis using statistical features and fuzzy classifications

    Get PDF
    Medical thermography has proved to be useful in various medical applications including the detection of breast cancer where it is able to identify the local temperature increase caused by the high metabolic activity of cancer cells. It has been shown to be particularly well suited for picking up tumours in their early stages or tumours in dense tissue and outperforms other modalities such as mammography for these cases. In this paper we perform breast cancer analysis based on thermography, using a series of statistical features extracted from the thermograms quantifying the bilateral differences between left and right breast areas, coupled with a fuzzy rule-based classification system for diagnosis. Experimental results on a large dataset of nearly 150 cases confirm the efficacy of our approach that provides a classification accuracy of about 80%

    Effective image clustering based on human mental search

    Get PDF
    Image segmentation is one of the fundamental techniques in image analysis. One group of segmentation techniques is based on clustering principles, where association of image pixels is based on a similarity criterion. Conventional clustering algorithms, such as k-means, can be used for this purpose but have several drawbacks including dependence on initialisation conditions and a higher likelihood of converging to local rather than global optima. In this paper, we propose a clustering-based image segmentation method that is based on the human mental search (HMS) algorithm. HMS is a recent metaheuristic algorithm based on the manner of searching in the space of online auctions. In HMS, each candidate solution is called a bid, and the algorithm comprises three major stages: mental search, which explores the vicinity of a solution using Levy flight to find better solutions; grouping which places a set of candidate solutions into a group using a clustering algorithm; and moving bids toward promising solution areas. In our image clustering application, bids encode the cluster centres and we evaluate three different objective functions. In an extensive set of experiments, we compare the efficacy of our proposed approach with several state-of-the-art metaheuristic algorithms including a genetic algorithm, differential evolution, particle swarm optimisation, artificial bee colony algorithm, and harmony search. We assess the techniques based on a variety of metrics including the objective functions, a cluster validity index, as well as unsupervised and supervised image segmentation criteria. Moreover, we perform some tests in higher dimensions, and conduct a statistical analysis to compare our proposed method to its competitors. The obtained results clearly show that the proposed algorithm represents a highly effective approach to image clustering that outperforms other state-of-the-art techniques

    Distributed strategy adaptation with a prediction function in multi-agent task allocation

    Get PDF
    Coordinating multiple agents to complete a set of tasks under time constraints is a complex problem. Distributed consensus-based task allocation algorithms address this problem without the need for human supervision. With such algorithms, agents add tasks to their own schedule according to specified allocation strategies. Various factors, such as the available resources and number of tasks, may affect the efficiency of a particular allocation strategy. The novel idea we suggest is that each individual agent can predict locally the best task inclusion strategy, based on the limited task assignment information communicated among networked agents. Using supervised classification learning, a function is trained to predict the most appropriate strategy between two well known insertion heuristics. Using the proposed method, agents are shown to correctly predict and select the optimal insertion heuristic to achieve the overall highest number of task allocations. The adaptive agents consistently match the performances of the best non-adaptive agents across a variety of scenarios. This study aims to demonstrate the possibility and potential performance benefits of giving agents greater decision making capabilities to independently adapt the task allocation process in line with the problem of interest

    Fast consensus for fully distributed multi-agent task allocation

    Get PDF
    In distributed multi-agent task allocation problems, the time to find a solution and a guarantee of reaching a solution, i.e. an execution plan, is critical to ensure a fast response. The problem is made more difficult by time constraints on tasks and on agents, which may prevent some tasks from being executed. This paper proposes a new distributed consensus-based task allocation algorithm that reduces convergence time with respect to previous methods, i.e. the time required for the network of agents to agree on a task allocation, while maximising the number of allocated tasks. The novel idea is to reduce the time to reach consensus among agents by using a hierarchy or rank-based conflict resolution among agents. Unlike other existing algorithms, this method enables different agents to construct their task schedules using any insertion heuristic, and still guarantee convergence. Simulation results demonstrate that the proposed approach can allocate a greater number of tasks in a shorter time than an established baseline method. Additionally, the analysis delineates dependencies between optimal insertion strategies and number of tasks per agent, providing insights for further optimisation strategies

    Anisotropic mean shift based fuzzy c-means segmentation of deroscopy images

    Get PDF
    Image segmentation is an important task in analysing dermoscopy images as the extraction of the borders of skin lesions provides important cues for accurate diagnosis. One family of segmentation algorithms is based on the idea of clustering pixels with similar characteristics. Fuzzy c-means has been shown to work well for clustering based segmentation, however due to its iterative nature this approach has excessive computational requirements. In this paper, we introduce a new mean shift based fuzzy c-means algorithm that requires less computational time than previous techniques while providing good segmentation results. The proposed segmentation method incorporates a mean field term within the standard fuzzy c-means objective function. Since mean shift can quickly and reliably find cluster centers, the entire strategy is capable of effectively detecting regions within an image. Experimental results on a large dataset of diverse dermoscopy images demonstrate that the presented method accurately and efficiently detects the borders of skin lesions

    Increasing allocated tasks with a time minimization algorithm for a search and rescue scenario

    Get PDF
    Rescue missions require both speed to meet strict time constraints and maximum use of resources. This study presents a Task Swap Allocation (TSA) algorithm that increases vehicle allocation with respect to the state-of-the-art consensus-based bundle algorithm and one of its extensions, while meeting time constraints. The novel idea is to enable an online reconfiguration of task allocation among distributed and networked vehicles. The proposed strategy reallocates tasks among vehicles to create feasible spaces for unallocated tasks, thereby optimizing the total number of allocated tasks. The algorithm is shown to be efficient with respect to previous methods because changes are made to a task list only once a suitable space in a schedule has been identified. Furthermore, the proposed TSA can be employed as an extension for other distributed task allocation algorithms with similar constraints to improve performance by escaping local optima and by reacting to dynamic environments

    The development of an augmented reality (AR) approach to mammographic training: overcoming some real world challenges

    Get PDF
    A dedicated workstation and its corresponding viewing software are essential requirements in breast screener training. A major challenge of developing further generic screener training technology (in particular, for mammographic interpretation training) is that high-resolution radiological images are required to be displayed on dedicated workstations whilst actual reporting of the images is generally completed on individual standard workstations. Due to commercial reasons, dedicated clinical workstations manufactured by leading international vendors tend not to have critical technical aspects divulged which would facilitate further integration of third party generic screener training technology. With standard workstations, it is noticeable that the conventional screener training depends highly on manual transcription so that traditional training methods can potentially be deficient in terms of real-time feedback and interaction. Augmented reality (AR) provides the ability to co-operate with both real and virtual environments, and therefore can supplement conventional training with virtual registered objects and actions. As a result, realistic screener training can co-operate with rich feedback and interaction in real time. Previous work has shown that it is feasible to employ an AR approach to deliver workstation-independent radiological screening training by superimposing appropriate feedback coupled with the use of interaction interfaces. The previous study addressed presence issues and provided an AR recognisable stylus which allowed for drawing interaction. As a follow-up, this study extends the AR method and investigates realistic effects and the impacts of environmental illumination, application performance and transcription. A robust stylus calibration method is introduced to address environmental changes over time. Moreover, this work introduces a completed AR workflow which allows real time recording, computer analysable training data and further recoverable transcription during post-training. A quantitative evaluation results show an accuracy of more than 80% of user-drawn points being located within a pixel distance of 5

    Exploiting diversity for optimizing margin distribution in ensemble learning

    Get PDF
    Margin distribution is acknowledged as an important factor for improving the generalization performance of classifiers. In this paper, we propose a novel ensemble learning algorithm named Double Rotation Margin Forest (DRMF), that aims to improve the margin distribution of the combined system over the training set. We utilise random rotation to produce diverse base classifiers, and optimize the margin distribution to exploit the diversity for producing an optimal ensemble. We demonstrate that diverse base classifiers are beneficial in deriving large-margin ensembles, and that therefore our proposed technique will lead to good generalization performance. We examine our method on an extensive set of benchmark classification tasks. The experimental results confirm that DRMF outperforms other classical ensemble algorithms such as Bagging, AdaBoostM1 and Rotation Forest. The success of DRMF is explained from the viewpoints of margin distribution and diversity
    corecore